difluoroacetate. In general, it appears that an increase in the extent of fluorination of an organic compound results in an increase in thermal expansion coefficient.

Acknowledgment.—This work was carried out under a grant established at the University of Tennessee as the Fulton Fellowship by the Fulton– Sylphon Company of Knoxville, Tennessee.

Department of Chemistry University of Tennessee Knoxville, Tenn.

Decomposition of Nitrogen Pentoxide in the Presence of Nitric Oxide. IV. Effect of Noble Gases

By David J. Wilson and Harold S. Johnston Received June 22, 1953

The rate of the reaction $N_2O_5 + NO \rightarrow 3NO_2$ has been shown by Smith and Daniels¹ and by Mills and Johnston² to be that of an elementary unimolecular reaction. At around 0.1 mm. pressure in a 22-liter flask, the reaction is homogeneous and definitely within the second-order region.³ The lowconcentration second-order rate constants of a series of gases have been reported.⁴

Using the 22-liter bulb, and the same method of interpreting the data as was used previously,^{3, 4} we have determined the low-concentration secondorder rate constants of the noble gases and carbon tetrachloride. Reactant pressures were each about 0.08 mm., and foreign gas pressures ranged from 3 to 0.02 mm. Experimental results are given in Table I.

Table I

EXPERIMENTAL RESULTS

			Low concn. second-order rate constant, cc.			
	No. of	Intercept,	mole ⁻¹ sec. $^{-1} \times 10^{5}$ Standard Ratio to			
M gas	points	sec. ⁻¹	Value	error	pure N ₂ O ₆	
He	27	0.0132	2.80	0.26	0.124	
Ne	17	.0129	2.02	.32	.090	
Kr	26	.0119	3.57	.23	.159	
Xe	11	. 0134	3.30	.95	.147	
CCl4	30	. 0130	12.4	1.3	. 551	

As shown previously, the activating efficiency function of the state i above the critical energy, $a_{\rm Mi}$, can be written as $a_{\rm Mi} = b_{\rm Mi}P_{\rm i}$, that is, the relative activating efficiency is also the relative deactivating efficiency. The function $b_{\rm Mi}$ is further factored, $b_{\rm Mi} = b_{\rm M}f_{\rm Mi}$, where $b_{\rm M}$ is the kinetic collision constant

$$b_{\rm M} = N_0 \left[8\pi RT \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \right]^{1/2} \left(\frac{\sigma_1 + \sigma_2}{2} \right)^2 \quad (1)$$

where N_0 is Avogadro's number; σ_1 and σ_2 , the collision diameters of the colliding particles; M_1 and M_2 , the molecular weights of the colliding particles; and R and T have their usual meaning. The func-

(1) J. H. Smith and F. Daniels, THIS JOURNAL, 69, 1735 (1947).

(2) R. L. Mills and H. S. Johnston, *ibid.*, 73, 938 (1951).

(4) H. S. Johnston, *ibid.*, **75**, 1567 (1953).

tion f_{Mi} is the efficiency factor for deactivation which in general may be a function of each state i and a different function for each foreign gas M.

If the collision constant can be calculated by 1, then the relative efficiencies with $b_{\rm M}$ factored out give the ratios $\overline{(f_{\rm M})}/\overline{(f_{\rm I})}$, where 1 stands for nitrogen pentoxide, and the bar indicates an average with respect to $P_{\rm i}$ over the excited states. If deactivation occurred at every collision or if $f_{\rm Mi}$ depended on the quantum states i of the reactant molecule only but not on the identity of the foreign gas M, this ratio would be unity every time. It is not. (See Table II. This table includes data calculated from reference 4.)

TABLE	II
-------	----

EFFICIENCY	AND	RELATIVE	EFFICIENCY
------------	-----	----------	------------

M gas	Mol. wt.	Collision diameter, Å.	Low concn. rate const./kinetic collision const., $\overline{(f_{\rm M})} \times 10^{10}$	(fx)/(f ₁)
He	4	2.18^{a}	6.02	0.0650
Ne	20	2.59 4	7.95	.0855
Α	40	3.64^{a}	14.3	.154
Kr	83.8	4.16^{a}	19.3	,208
Xe	131.3	4.85^{a}	17.5	. 189
N_2	28	3.75°	21.2	.228
NO	30	3.75	27.9	.300
$\rm CO_2$	44	4.59^{a}	35.9	.387
CCl_4	154	5.46	62.5	. 673
SF_{θ}	146	4.52	41.2	. 443
N_2O_5	108	6.00	93.0	1.000

^a From E. H. Kennard, "Kinetic Theory of Gases," Mc-Graw-Hill Book Co., Inc., New York, N. Y., 1938, p. 149.

Furthermore, it is impossible to adjust the collision diameters of either nitrogen pentoxide or of the various M gases to obtain ratios $(f_M)/(f_1)$ that are equal to unity. For the molecular weights are accurately known, and the ratio, $(2\sigma_{N_i0_i}/\sigma_{N_j0_i} + \sigma_M)^2$, can never be greater than 4, which is not sufficiently large to account for the observed relative efficiencies of the noble gases and nitrogen. Thus, the efficiency function f_{M_i} does differ markedly from one gas to another. (These results do not answer the question as to whether or how the efficiency function varies over the states i of the reactant molecule.)

Relative efficiency increases slowly with molecular weight through at least krypton for the noble gases. It increases at constant molecular weight as one goes from noble gases to diatomic or polyatomic gases, and nitrogen pentoxide is much more efficient than anything else we have yet used. A study of the relative efficiencies of diatomic and polar gases is now in progress.

We are grateful to the National Science Foundation for a Fellowship in support of this work, and to the Office of Naval Research, Project NR-051-246, Contract N6 onr 25131.

DEPARTMENT OF CHEMISTRY STANFORD UNIVERSITY STANFORD, CAL.

⁽³⁾ H. S. Johnston and R. L. Perrine, ibid., 78, 4782 (1951).